Confined mature cells lose their specialized characteristics by sixth day and completely transition into re-deployable stem cells by 10th day — ScienceDaily

Posted on

Stem cells are the blank slate on which all specialised cells in our bodies are built and they are the foundation for every organ and tissue in the body.

Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute (MBI) at the National University of Singapore (NUS) and the FIRC Institute of Molecular Oncology (IFOM) in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification — by confining them to a defined geometric space for an extended period of time.

“Our breakthrough findings will usher in a new generation of stem cell technologies for tissue engineering and regenerative medicine that may overcome the negative effects of geonomic manipulation,” said Prof Shivashankar.

Turning back the cellular clock

It has been over a decade since scientists first showed that mature cells can be reprogrammed in the lab to become pluripotent stem cells that are capable of being developed into any cell type in the body. In those early studies, researchers genetically modified mature cells by introducing external factors that reset the genomic programmes of the cells, essentially turning back the clock and returning them to an undifferentiated or unspecialised state. The resultant lab-made cells, known as induced pluripotent stem cells (iPSCs) can then be programmed into different cell types for use in tissue repair, drug discovery and even to grow new organs for transplant. Importantly, these cells did not need to be harvested from embryos.

However, a major obstacle is the tendency for any specialised cell that is developed from iPSCs, to form tumours after being introduced into the body. To understand why this occurred, researchers turned their focus to understanding how stem cell differentiation and growth is regulated in the body, and in particular, how cells naturally revert to an immature stem cell-like state, or convert to another cell type, during development, or in tissue maintenance.

Leave a Reply

Your email address will not be published. Required fields are marked *